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Zusammenfassung

Augmentierende Exoskelette sind eine vielversprechende Technologie zur Unterstützung
der menschlichen Leistungsfähigkeit. Anwendungen in industriellen, medizinischen
und kommerziellen Bereichen sind möglich. Arbeitern kann beispielsweise große Belas-
tung abgenommen werden, die Bewegungsfähigkeit von körperlich eingeschränkten
Menschen verbessert werden oder Athleten beim Sport unterstützt werden. Eine
genaue und intuitive Steuerung ist notwendig, um gute Benutzerfreundlichkeit zu
gewährleisten, daher ist die Erkennung der Absichten hinsichtlich Bewegung des
Benutzers entscheidend. In dieser Arbeit werden zwei Verfahren aus dem Bereich
des Deep Learning – Convolutional Neural Networks (CNNs) und Netzwerke mit
Long Short-Term Memory (LSTMs) – zur Klassifizierung menschlicher Bewegung
verwendet und beurteilt. Menschliche Bewegung wird mit einem passiven Exoskelett
der unteren Extremitäten aufgezeichnet, welches mit sieben 3D-Kraftsensoren und drei
Trägheitsmesseinheiten ausgestattet ist. Die Klassifikation basiert auf einem Ansatz,
bei dem Datenpunkte zu Zeitfenstern verkettet werden. Diese Zeitfenster dienen als
zu klassifizierende Informationen. Der Auswertung liegt ein Datensatz zugrunde, der
Bewegungsdaten von zehn Personen, die 14 alltägliche Bewegungen wie Gehen und
Treppensteigen jeweils zehnmal ausgeführt haben, enthält.

Die Auswertung umfasst Klassifikatoren, die für eine Person optimiert sind (Single-
Subject) und solche, die mit Daten mehrerer Personen trainiert wurden (Multi-Subject).
Bei kleinen Fenstergrößen schneiden optimierte Modelle besser ab als die allgemeineren,
jedoch schrumpft dieser Unterschied bei größeren Zeitfenstern. So hat das CNN bei-
spielsweise eine durchschnittliche Klassifikationsgenauigkeit von 0,9680 im optimierten
Fall, während diese für die allgemeinere Evaluation auf 0,9296 sinkt. Bei größeren
Zeitfenstern liegen beide Werte über 0,99. Der LSTM-Ansatz übertrifft CNNs bei
kleinen Fenstergrößen, so erreicht dieser eine Klassifikationsgenauigkeit von 0,9707 im
Vergleich zu 0,9296 bei der Multi-Subject-Auswertung. Um die Generalisierungsfähig-
keit zu testen, werden Modelle, die mit Daten mehrerer Probanden trainiert wurden,
mit Daten eines zuvor nicht gesehenen Subjekts ausgewertet. Dabei wurde eine durch-
schnittliche Klassifikationsgenauigkeit von 0,9152 für CNNs und 0,9073 für LSTMs
gemessen. Im Vergleich zu früheren Ansätzen zur Bewegungsklassifikation basierend
auf Hidden-Markov-Modellen (Beil et al., 2018) für diese Daten konnte die Klassifika-
tionsqualität verbessert werden, beispielsweise wurde die Klassifikationsgenauigkeit
der Multi-Subject-Auswertung von 0,928 auf 0,999 erhöht.
Diese Bachelorarbeit ist wie folgt aufgebaut: Kapitel 1 motiviert zunächst Bewe-

gungsklassifikation im Kontext von Exoskeletten. Kapitel 2 erläutert Grundlagen
künstlicher neuronaler Netze und präsentiert übliche Architekturen. Darüber hinaus
werden drei gängige Evaluationsarten für Klassifikation menschlicher Bewegungen
eingeführt und Metriken zur Quantifizierung der Klassifikationsqualität vorgestellt.
Kapitel 3 diskutiert ähnliche Arbeiten aus der Literatur und stellt verschiedene Sensor-
systeme, Ansätze zur Bewegungsklassifikation und Evaluationsverfahren vor. Kapitel 4
behandelt das Design des verwendeten Exoskeletts, Modellierung der Sensordaten und
Eigenschaften des benutzten Datensatzes. In Kapitel 5 werden zwei verschiedene Deep
Learning Architekturen zur Bewegungsklassifikation vorgeschlagen. Ein CNN und ein
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LSTM dienen als Klassifikatoren menschlicher Bewegungsdaten. Anschließend sind
die Evaluationsergebnisse beider Modelle in Kapitel 6 dargestellt. Darüber hinaus
werden die Ergebnisse mit bestehenden Arbeiten verglichen und die Möglichkeit der
Echtzeit-Klassifizierung wird untersucht. In Kapitel 7 wird die Arbeit zusammengefasst
und Ideen für die zukünftige Arbeiten gesammelt.



Abstract

Augmenting exoskeletons is a promising technology in assisting human performance.
Applications in industrial, medical and commercial areas are feasible. For example,
strain is put off a worker, mobility of physically limited people is increased or athletes
are supported in their motions. Accurate and intuitive control is necessary to ensure
ease of usage. Thus, recognition of the user’s motion intentions is critical. In this thesis,
two deep learning approaches – Convolutional Neural Networks (CNNs) and Long
Short-Term Memory networks (LSTM) – are evaluated for human motion classification.
Human motion is recorded with a passive lower limb exoskeleton equipped with seven
3D-force sensors and three inertial measurement units. Classification is based on
a sliding window approach, i. e., the most recent data points are concatenated and
then classified. For the evaluation a data set containing motion data of ten subjects
performing 14 motions ten times each is used.

The evaluation includes models that are optimized for one subject (Single-Subject)
and models trained with data of multiple people (Multi-Subject). For small window
sizes optimized models perform better than the more general models, but this difference
shrinks for larger window sizes. For example, CNN achieves an average classification
accuracy of 0.9680 in the optimized case, while for the more general evaluation
this drops to 0.9296. With larger window sizes both values are over 0.99. The
LSTM approach outperforms CNNs for small window sizes, e. g., they achieve a
classification accuracy of 0.9707 compared to 0.9296 in Multi-Subject evaluation. To
analyze generalization performance, models trained with data of multiple subjects are
evaluated with data of an unseen subject. Here, an average classification accuracy
of 0.9152 for CNNs and 0.9073 for LSTMs was assessed. In comparison to prior
approaches for motion classification based on Hidden Markov Models (Beil et al., 2018)
for this data, all evaluation scores could be improved, e. g., Multi-Subject classification
accuracy increased from 0.928 to 0.999.
This thesis is organized as follows: Chapter 1 introduces and motivates motion

classification in the context of exoskeletons. Chapter 2 provides fundamentals about
neural networks and common architectures. In addition, three common evaluation
types in the context of human motion classification are introduced and metrics for
quantifying classification performance are presented. In Chapter 3, related research in
the literature is discussed. Different sensor systems, motion classification approaches
and evaluation methods are presented. Chapter 4 covers design of the used exoskeleton,
modelling of sensor data and properties of the used data set. Two different deep
learning architectures are proposed in Chapter 5. A Convolutional Neural Network and
a Long Short-Term Memory model are employed as classifiers of human motion data.
Then, evaluation results of both models are presented in Chapter 6. Furthermore,
results are compared to existing work and online classification capability is investigated.
In Chapter 7, the thesis is concluded and ideas for future work are proposed.
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Chapter 1.

Introduction

Exoskeletons are a promising technology in augmenting humans, as many real-world
applications are possible: increasing mobility of elderly people (Figure 1.1(a)), assisting
athletes in their sport (Figure 1.1(b)) or supporting workers in physically exhausting
jobs like construction (Figure 1.1(c)).

While exoskeletons for rehabilitation and substitution have been in the focus of
research, currently research is conducted in the field of exoskeletons for healthy
subjects. The main goal of such wearable robots is to enhance the user’s performance.
Additionally, physical work bears the risk of injuring the worker due to high strain
or bad body posture. This risk can be reduced, as forces are distributed to the
exoskeleton and a good posture is promoted. Beil (2019) points out two main
challenges of augmenting exoskeletons: an exoskeleton should assist the user in their
motions but must not limit them. Thus, the structure of the exoskeleton must
be kinematically compatible to the human body and a control system is necessary
that recognizes the user’s current motion and/or intention. Different use-cases offer
opportunities for optimizing a control system. For example, if there is only one user
for the system, its recognition unit can be optimized for that user. On the other hand,
users may also want to use an exoskeleton spontaneously, resulting in a challenging
task of recognizing motion of an unknown subject. Furthermore, sensors and their
placement have to be chosen for recording human motion. Since motion recognition is
based on these recordings, a sensor setup providing useful data is necessary.

The High Performance Humanoid Technologies Lab (H2T) developed a passive lower
limb exoskeleton to record human motion (Beil et al., 2018). Force sensors and inertial
measurement units collect physical changes. To classify human motion, data points
are concatenated to windows. In their work, Hidden Markov Models were employed
to classify windows. This thesis extends their work on motion classification. Different
deep learning architectures for motion classification are evaluated. Furthermore,
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2 Chapter 1. Introduction

(a) (b) (c)

Figure 1.1.: Examples for augmenting exoskeletons. (a) is designed for people with
limited muscular power and supports the lower body in locomotion. (b)
is a commercially available exoskeleton assisting skiers. It reduces loads
on the knee, thus protecting the knee and assisting muscles involved.
(c) shows a full-body exoskeleton for industrial applications. Sources of
pictures: (Hyundai Motor; Roam Robotics; Muoio).

constraints from the use-case are investigated. For example, a classifier should infer
fast to enable online classification.

This thesis is organized as follows. Chapter 2 provides fundamentals about neural
networks, quantifying quality of classification algorithms and evaluation types in the
field of human motion classification. In Chapter 3, related approaches in the literature
are discussed. Chapter 4 covers design of the used exoskeleton, modelling of sensor
data and properties of the used data set. Two different deep learning models are
employed for motion classification. They are specified in Chapter 5. Evaluation results
are presented in Chapter 6. In Chapter 7, the thesis is concluded and ideas for future
work are proposed.



Chapter 2.

Fundamentals

Section 2.1 starts with a brief introduction into artificial neural networks and relevant
state-of-the-art network architectures. Then, used validation metrics are described in
Section 2.2. In Section 2.3 different evaluation methods are presented.

2.1. Neural Networks

Artificial neural networks are a popular tool of machine learning. This section gives
a short introduction to the topic. First, basic functionality and improvements are
presented in Section 2.1.1. Then, Section 2.1.2 and Section 2.1.3 introduce special types
of neural networks: Convolutional Neural Networks and Long Short-Term Memory.
Lastly, basic hyperparameters of neural networks are presented in Section 2.1.4.

2.1.1. Basics

Artificial neural networks are inspired by biological nervous systems. The basic idea
is to have multiple neurons connected like a directed graph. Biological signals are
propagated from one neuron to its neighbors. One nerve cell can also receive multiple
input signals that sum up in this case. In the biological neural cell, the input signal
is only propagated further if a certain potential difference (approx. −55mV , called
threshold potential) at its membrane is reached (Husar, 2020). This behavior can
also be mathematically modeled: every artificial neural cell is described by its bias
representing the threshold potential and an activation function for normalization.
It should be noted, that this model is an overly simplified approximation of the
physiological system (Wasserman and Schwartz, 1988). In former times, the sigmoid
function σ(t) = 1

1+e−t was used as a standard activation function. Currently most
neural networks use the "rectified linear unit" ReLU(t) =max(0, t). It is also proven
that training networks with ReLU activation functions is more successful than using
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4 Chapter 2. Fundamentals

sigmoid (Nair and Hinton, 2010). A network is not only parameterized by its neural
cells but also by its connections. As mentioned above, a neural network in general can
also be seen as a graph modeling connections (synapses) between the cells. The edges
of this graph are weighted. These weights are seen as factors for the signal propagated
through this edge. A cell z with incoming signals xi, i= 1, ..,n, weights wi, i= 1, ..,n
of the incoming edges bias bz and activation function Φ propagates

xz = Φ(
n∑

i=1
wiẋi− bz) (2.1)

as its output. This describes the basic perceptron that was first simulated in 1957
(Rosenblatt, 1957). A single perceptron can only simulate a linear decision surface,
e. g., the XOR-function can not be modeled with a single perceptron. This limitation is
tackled with the concept of multilayer perceptrons (Leshno et al., 1993). An example
of a multilayer perceptron is given in Figure 2.1.

Figure 2.1.: Example of a multilayer perceptron with layers consisting of three, six
and three neurons. The neurons of the first layer propagate the input
signal. Neurons of other layers forward a signal based on Equation (2.1).
Figure generated with NN-SVG (LeNail, 2019).

Most recently, deep learning made it practical to build large networks and usage of
graphics cards sped training up by a lot. A comprehensive history of neural networks
can be found in the literature (Schmidhuber, 2015). A textbook introduction to neural
networks is given by Hertz (2018).

Real-world applications of neural networks are image recognition (Krizhevsky et al.,
2012), machine translation (Thommes, 2017), medical diagnosis (Seetha and Raja,
2018), hydrology (Kratzert et al., 2019) and many more.

2.1.2. Convolutional Neural Networks

Convolutional Neural Network (CNN) is a class of artificial neural networks promi-
nently used in computer vision tasks. In 2012, Krizhevsky et al. (2012) achieved best
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Figure 2.2.: Example of a Convolutional Neural Network . Multiple convolutions are
performed on the input image (left), generating feature maps. Further
reduction is done by a pooling layer, then the signal is transformed into a
vector (right) by a fully connected layer. Figure generated with NN-SVG
(LeNail, 2019).

results in the ImageNet classification benchmark. CNNs were first applied by LeCun
et al. (1989).

For an comprehensive introduction see Goodfellow et al. (2016, chapter 9). A CNN
employs the mathematical operation convolution to its input. Convolutions have
many applications, ranging from signal analysis in electrical engineering to image
manipulation in popular social networks like Instagram. A discrete convolution is
parameterized by a convolution kernel. This kernel itself may be represented as a
Rn×m-matrix. The contents of this kernel are called kernel weights. The main idea of
CNNs is to learn these kernel weights via backpropagation. A convolutional layer can
also perform multiple convolutions to its input, creating so called feature maps for
every convolution. Commonly, a convolutional layer is followed by a pooling layer. A
pooling layer reduces multiple outputs the previous layer to a single statistic, e. g.,
a 2×2 max-pooling layer reduces 4 pixels each to one with the new pixel being the
maximum of the reduced 4 pixels. Pooling helps making processing more robust, as
minor positional changes in the input are not forwarded by the pooling layer. An
example CNN is given in Figure 2.2. Modern CNNs apply multiple convolutions to
the input, e.g., Krizhevsky et al. (2012) employs 5 convolutional layers. The output
of these layers can further be propagated to a classifying part of a network, e. g.,
dense layers. Other parameters like kernel size or stride are to be set by the network
architect.

Since Krizhevsky et al. (2012) successfully employed CNNs for computer vision
tasks, CNNs were applied for many more real-world problems. For example, face
recognition, including face recognition of primates (Deb et al., 2018) and meteorology
(Liu et al., 2016).
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Figure 2.3.: Example of an recurrent neural network. Signals of the hidden layer are
also forwarded to other neurons of that layer. Therefore, information
persists in the network. Figure is conception of Graves (2012), changed
for simplification.

2.1.3. Long Short-Term Memory

Long Short-Term Memory (LSTM) for artificial neural networks was first introduced
in 1995 by Hochreiter and Schmidhuber (1995, 1997). Since then, many variations of
this architecture have been proposed (Greff et al., 2015).
LSTM is a technique that enhances standard recurrent neural networks. A com-

prehensive introduction to recurrent neural networks is given by Graves (2012). The
key idea of recurrent networks is that an input signal is not only propagated forwards
from one layer to its successor but also backwards or to other neurons in the same
layer. Thus, a neuron’s output is not only forwarded but also persists in the networks
internal state. When a new input is given to the network, its processing depends on
the networks weights and its internal state. This concept is depicted in Figure 2.3.
Recurrent neural networks are specialized for processing sequences (Goodfellow et al.,
2016).

A known challenge of recurrent neural networks is the vanishing gradient problem
(Hochreiter, 1991). It states that the influence of an input either changes exponentially
– either in- or decreasing – while it is propagated in the network. LSTM tackles this
challenge by employing a novel architecture: a LSTM block (unit) is used instead of a
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typical neuron that applies an activation function to the sum of its inputs. A LSTM
block has three gates – input, output and forget – that combine the signal with the
state of the block. With this technique, flow of the recurring signal can be controlled.
LSTM has been used to many real-world applications, e. g., speech recognition,

handwriting recognition, reinforcement learning (Graves, 2012).

2.1.4. Hyperparameters of a Neural Network

The task of creating a suitable neural network for a specific task is challenging. Several
parameters of a neural network have to be set before starting the training process.

First, a type of network has to be chosen for the specific application. See the article
of Schmidhuber (2015) for an overview of different types. There are known conditions
implying which type of network is suitable. E.g., in image processing CNNs are
commonly used and LSTMs find their application in time-series analysis like speech
recognition. These are just recommendations and there are several applications where
a type of network is used in other contexts, e. g., deepl.com uses CNNs for machine
translation (Thommes, 2017).
With a selected type of network there are many parameters to set. E.g., in a

deep neural network consisting several dense (fully-connected) layers the number of
neurons in each layer has to be set. Large layers bring the risk of over-fitting faster
(Aggarwal, 2018) and need more computation power but small layers may not match
the classification performance, as less features can be learned. As another example, in
convolutional layers the convolution is to be parameterized: size of the kernel, stride
and number of generated feature maps. For further information on setting the size of
a neural network the recent work of Belkin et al. (2019) is recommended.

Furthermore, there are general parameters like the number of training epochs. With
a large number of training epochs the model is likely over-fitting to the training data.
With a small number of training epochs the model’s learnable parameters are not
adjusted enough to fit the task. In the learning process, more specifications have to be
set. For the backpropagation algorithm a loss function has to be defined. Furthermore,
a learning rate and an optimizer may be set. They influence the rate of change for
learnable parameters. Adam (Kingma and Ba, 2015) and stochastic gradient descent
are popular approaches for this issue.

The task of finding a good configuration of hyperparameters is known as hyperpa-
rameter tuning. Classification quality can be improved by hyperparameter tuning.
Often, this is a manual task, but automated approaches are available (Bardenet et al.,
2013).

2.2. Metrics

This section defines metrics used for measuring the quality of a classification. These
metrics are already implemented by Pedregosa et al. (2011) in their Python-package
scikit-learn. The package is used in the evaluation chapter to calculate classification
quality scores.

deepl.com


8 Chapter 2. Fundamentals

In Sections 2.2.1 and 2.2.2, metrics for binary classification are introduced. Then, in
Section 2.2.3, these definitions are used to generalize metrics for multiclass classification.
Section 2.2.4 introduces confusion matrices as a compact overview of scores.

2.2.1. Accuracy

In binary classification, each sample is matched with one of two classes. Every sample
has a true class that it belongs to. The classification then yields a prediction for the
sample, i.e. the predicted class. Note, that in this chapter, classified and predicted
are equivalent terms, describing the output of a classifier. One of the two classes is
called the positive class, the other one is called negative class. The true and predicted
classes can be positive or negative. This results in the definition of True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN) given in Table 2.1,
where if true and predicted class match, the sample is correctly classified.

true class
positive negative

predicted class positive True Positive (TP) False Positive (FP)
negative False Negative (FN) True Negative (TN)

Table 2.1.: Definitions of True Positive (TP), True Negative (TN), False Positive (FP)
and False Negative (FN).

TP and TN are correctly classified samples. In statistics, FP is also known as type
I error and FN is known as type II error. Furthermore, accuracy is then defined as a
ratio of the number of correctly classified samples to the number of all samples in a
set:

accuracy = TP +TN

TP +TN +FP +FN

Accuracy is the most used metric in the reviewed related work. It indicates best
performance at its maximum value of 1. The following section defines more metrics
used for measuring quality of machine learning approaches.

2.2.2. Precision, Recall, F1-Score

While accuracy serves well as a quick and compact evaluation of a classifier, other
metrics can give insight into the quality of the classification to reveal certain strengths
and weaknesses. These are precision, recall and F1-Score. They are defined as follows:

precision = TP

TP +FP

recall = TP

TP +FN

F1 = 2× precision× recall
precision+ recall
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A low precision indicates that many samples are incorrectly classified as positive labels.
Recall (also known as sensitivity) can be interpreted as a classifier’s ability to find all
positive samples. As an example, consider a trivial classifier that always predicts the
true label. Its recall is 1, as there are no FN. Its precision is the same as its accuracy
and depends on the set in terms of the ratio of positive and negative samples. Lastly,
the F1-Score is defined as the harmonic mean of recall and precision.
All defined scores indicate best performance at their maximum value of 1. Each

score should always be read in a context, e. g., in some applications a high recall
is necessary, while other application may profit from a high precision at cost of
recall. When detecting tumors (Seetha and Raja, 2018) in medical applications a
high sensitivity is favorable over high precision, as not recognized tumors have severe
consequences.

2.2.3. Multiclass Classification Metrics

The previously defined metrics are used for measuring performance of a binary classifier.
The application of this thesis is multiclass classification. This means that there are
multiple disjoint classes and each sample belongs to exactly one of the classes. This
can also be generalized to multilabel classification, where each sample may belong to
multiple classes.

To evaluate the performance of a multiclass classifier, the previously defined metrics
can be used as follows: For every class the metric is calculated with that class being
the positive class and all other classes combined being the negative class. Then these
scores are averaged. The calculation of the average may be weighted. Depending on
the weights properties of the classifier can be emphasized or suppressed.
Different averaging methods are discussed in this example: Given a sample with

true labels ytrue and predicted labels ypredicted as follows.

ytrue = [1,1,1,0,1,1,2,2,2,2,2,1,1] (2.2)
ypredicted = [1,1,1,1,1,1,2,2,2,2,2,2,0] (2.3)

Defined metrics are calculated for every class. Results are given in Table 2.2.

Precision Recall F1-Score Support
0 0.00 0.00 0.00 1
1 0.83 0.71 0.77 7
2 0.83 1.00 0.91 5

micro avg 0.77 0.77 0.77 13
macro avg 0.56 0.57 0.56 13

weighted avg 0.77 0.77 0.76 13

Table 2.2.: Metrics for a multiclass classification example.

The support of each class is the number of occurrences of itself in ytrue. To
summarize metrics of every class, different approaches are eligible. Macro averaging
is a naive approach, as every class is weighted with 1. If the classes are unbalanced
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this does not represent a classifiers true ability. Weighted averaging weights the score
of every class with its support. This represents the distribution of classes better.
Micro averaging calculates the scores based on all results. All counts of TP, TN
are accumulated and scores are calculated with the formulas in Section 2.2.2. When
applying micro averaging to precision and recall with all classes selected these scores
degenerate to accuracy: The number of TP is calculated by counting the correctly
classified samples. The remaining samples are incorrectly classified and are FP and
FN simultaneously (i. e., a sample of class 1 is classified as 2 - it is a FN for class 1 and
a FP for class 2). With these identities FN = FP and FN +TP being the number of
all samples the formulas for precision and recall calculate the ratio of correctly labeled
samples to all samples.

2.2.4. Confusion Matrix

To review classification performance for each class, confusion matrices are a popular
presentation form. An element cij of the confusion matrix is the number of times
samples of class i are classified as class j. All correct classifications are on the diagonal,
incorrect ones are off the diagonal (Sammut and Webb, 2017). Furthermore, rows of
a confusion matrix contain TP and FN of a class. Columns contain TP and FP of a
class.

For better comparison normalization is performed. To normalize a confusion matrix,
every row is normalized, i. e., dividing elements cij by the sum of row i. In a normalized
confusion matrix, an element cij gives the ratio of how many samples of class i are
classified as class j. Thus, values on the diagonal are the recall of a class.
In Figure 2.4, the absolute and normalized confusion matrix are given for the

example of Section 2.2.3.
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Figure 2.4.: Confusion matrices for the example of Section 2.2.3.

2.3. Evaluation Types

This section explains different evaluation types commonly used in the context of
human motion classification. First, in Section 2.3.1 stratified k-fold cross validation
is explained and motivated. Sections 2.3.2 to 2.3.4 present different approaches of
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splitting the data set into training and testing set. Each evaluation type is motivated
by possible real-world scenarios.

2.3.1. k-Fold-Cross Validation

Measuring the quality of a classifier can be done with different metrics (e. g., those
explained in Section 2.2). The scores of those metrics assess quality of a classification
approach. These results depend on the data used for evaluating a classifier. Thus, the
true quality of a classifier cannot be calculated and must be approximated with data.
As methods of machine learning are commonly applied to unseen data, this constraint
should be taken into account when training a model. Therefore, a data set is split
into a training and a testing set. The model is fit to the data in the training set and
evaluated with data of the testing set. If the model performs significantly better on
the training than the testing set, this is known as over-fitting (Aggarwal, 2018). An
arbitrary split of the data set into training and testing might not be representative
and calculating the classification error with this split yields a faulty estimation of the
quality of a classifier. A popular method to estimate the classification error is k-fold
cross validation (Sammut and Webb, 2017).
This approach splits the data set into k disjoint parts of approximately equal size.

Then each part (fold) serves as the test set, while the other parts combined are the
training set. An example for 3-fold cross validation is given in Table 2.3.

Round Data Set Metric Score︷ ︸︸ ︷
1 Train Train Test a
2 Train Test Train b
3 Test Train Train c

Average (a+ b+ c)/3

Table 2.3.: Example rounds of a 3-fold cross validation. The data set is split into 3
parts and each part serves as test set once.

k-fold cross validation yields k evaluations of classification quality. The estimation
of the true error is the arithmetic mean of the errors in each fold.
This approach is enhanced by stratification: The data set is not arbitrarily split

but the data is divided into folds that approximately have the same distribution of
data. Stratification prevents folds from being unbalanced (e. g., in the worst case not
containing data of one class).
The following sections present different evaluation types. In general, these evalua-

tions describe a specific selection of data. They are based on k-fold cross validation,
i. e., a classifier’s quality is estimated with k-fold cross validation splitting selected
data into training and testing set.

2.3.2. Single-Subject Evaluation

Single-Subject evaluation estimates the quality of a classifier for every subject in
the data set individually: only the data of one subject is used for evaluating the
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quality of a classifier. In this manner, the classifier is evaluated for each subject. The
classification error is then estimated as the average of these evaluation values.

This training technique may be applicable for exoskeletons that are worn by exactly
one user. With this constraint it is possible to optimize a classifier specifically to the
user. A downside of this approach is the requirement of recording user’s motion data
and training the classifier prior to using it.
In human motion analysis, trajectories of one motion type usually differ, i. e., a

motion is not executed in the exact same way every time. This phenomenon is
observable within repetitions performed by one subject (intra-subject variance), but
also two persons typically perform the same motion differently, yielding inter-subject
variance.

In Single-Subject evaluation, only intra-subject variance in motion execution is of
interest.

2.3.3. Multi-Subject Evaluation
In Multi-Subject evaluation, motion data of multiple subjects is used as training and
test set. In the context of lower limb exoskeletons, there are applications where a
Multi-Subject evaluation is representative: e. g., an augmenting exoskeleton used by
multiple people.
In this evaluation type, inter-subject variance is an additional challenge in com-

parison to Single-Subject evaluation (Section 2.3.2). A classifier trained within this
evaluation is more general than one trained within Single-Subject evaluation as
multiple subjects are expected to be classified accurately.

2.3.4. Leave-One-Subject-Out Validation
In Single-Subject and Multi-Subject evaluation (see Sections 2.3.2 to 2.3.3), data in
the test set is expected to be similar to the one in the training set, as both are motion
data from one subject, thus only intra-subject variance is the difference between a
sample in the test set and one in the training set. In Leave-One-Subject-Out validation,
the data of one person serves as the test set, while data of multiple other subjects
serves as the training set. With this method the classifier is evaluated with data
of an unseen subject. To classify this data, inter-subject variance is to be tackled.
Leave-One-Subject-Out validation in the context of motion classification is a commonly
used technique to test the generalization performance of a classifier.

This evaluation type is also supported by possible applications in motion classifica-
tion: a trained classifier is deployed and classifies data from subjects that were not
represented in the training process.



Chapter 3.

Related Work

This chapter presents approaches in the field of motion classification. Three different
components of a concept are reviewed: System for recording data (Section 3.1), classi-
fication method (Section 3.2) and evaluation of the concept (Section 3.3). Section 3.4
summarizes and compares the related work.

3.1. Sensor System

Different sensory systems are available to record data in the context of human motion
analysis. This section presents the most common sensor setups. In Figure 1.1,
examples of such systems are depicted.

3.1.1. Motion Capture and Cameras

Motion capture systems (e. g., Vicon, see Figure 3.1(a)) are a high quality tool
in human motion analysis. Reflective markers are placed on a subjects body and
their positions are traced with infrared cameras. This system is accurate for coarse
movement but suffers from high cost and high set-up effort. Classification applied to
motion capture data appears in Li et al. (2007); Lv and Nevatia (2006); Mandery et al.
(2016). A cheaper system for motion capturing is vision-based. Here joint angles can
be calculated from, e. g., pose detection (Moeslund et al., 2006). A similar approach
can be found in Ratanamahatana and Keogh (2004).
These approaches are not suitable in the context of exoskeletons, as their usage

is limited to the location of the sensory system. Therefore, literature based on data
recorded with sensors mounted at the subject is surveyed hereafter.

13
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(a) (b) (c)

Figure 3.1.: Examples for common sensor systems for motion capture.
Left: Vicon motion capture. Markers are placed on the subject, cameras
trace their position. Picture from (Digital Arts).
Middle: Electroencephalogram. Electrodes placed at the head measure
electric activity in the brain. Picture from (ANT Neuro).
Right: IMUs placed on the subject indicated with red lines. Picture is
conception of Wang et al. (2015).

3.1.2. Electroencephalogram and Electromyogram

A popular concept of data collection in the context of motion classification is recording
bioelectrical signals. Electroencephalography (EEG, e. g., Figure 3.1(b)) measures
electric signals in the brain, while electromyography (EMG) measures electric signals
at the muscles. This technique is very suitable when working with physically impaired
subjects, as no physical motion itself is necessary for classifying the user’s current
motion intention. Classification is applied to such data in Villa-Parra et al. (2015);
Huang et al. (2009); Yin et al. (2012). According to Beil (2019) these sensors require
controlled environments and are complex to set up, as electrodes have to placed
carefully. Therefore, they are not feasible for the usage with augmenting exoskeletons.
Thus, in the context of augmenting exoskeletons, sensors that are mounted at the
exoskeleton itself are preferable.

3.1.3. IMUs and Force Sensors

Motion changes the pose of a subject’s limbs. This change can be measured with
Inertial Measurement Units (IMUs). Possible features are orientation and acceleration
of body parts. More features like joint angles can be derived. Kronenwett et al.
(2017) used a single IMU attached to the foot to detect specific phases of the gait
cycle and classifies running and walking. Um et al. (2017) classified gym exercises of
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many athletes recorded with a wearable forearm band containing an accelerometer
and a gyroscope. Gong et al. (2018) attached two IMUs to the subjects’ thighs and
classify six locomotion types. Tunçel et al. (2009) used the data of two IMUs at an
subjects leg to classify eight motions. Wang et al. (2015) attached seven IMUs to
the subject and classify seven basic motions. In Figure 3.1(c), their sensor setup is
depicted. Furthermore, interaction forces between the subject and the exoskeleton or
environment can measured. Taborri et al. (2015) used IMUs and force sensors under
the sole to classify the current phase of the gait cycle. The most closely related work
is the one of Beil et al. (2018). They used data of three IMUs and seven force sensors
attached to the exoskeleton to classify 13 common motions.
In addition, finding a minimal sensor setup is desirable to reduce cost and energy

consumption of sensor systems (see, e. g., Daab, 2019; Patzer and Asfour, 2019). For
further discussion on the topic, the survey of Novak and Riener (2015) is recommended.

3.2. Motion Classification Methods

Classifying data is a widespread task with many real-world applications. The field
of machine learning offers many tools to solve classification tasks. In the context of
motion classification, a comparison of several classifiers can be found in Tunçel et al.
(2009). They apply Bayesian Decision Making, decision trees, least-square methods,
k-nearest neighbor, dynamic time warping, support vector machines and artificial
neural networks as classifiers for their data. As their work shows, many different
techniques are eligible to tackle the classification task. In addition to the classification
quality (see Section 2.2), other properties of a technique can be investigated, e. g.,
a short processing time to classify a data point is critical to do online classification.
The following paragraph discusses different motion classification approaches.

In Kronenwett et al. (2017), a finite state machine was employed. States of this
machine represent phases of locomotion. State transitions are triggered if recorded
data exceeds manually defined thresholds. This technique is very efficient, as finite
state machines are computationally cheap.

In Wang et al. (2015), a support vector machine performed the classification. Gong
et al. (2018) employed an artificial neural network. Villa-Parra et al. (2015) compared
these approaches by applying support vector machines and artificial neural networks.
In their experiments, the artificial neural network showed a better performance than
the support vector machine.
Beil et al. (2018) used Hidden Markov Models (HMMs). In their approach, each

motion class corresponds to one HMM. To classify a sample, it is fed into every HMM.
This yields a likelihood for every class and the class with highest likelihood is assigned
to the sample. In Beil (2019) this approach competes with a final state machine and
the author concluded that HMMs outperform final state machines. Their classification
process is depicted and described in Figure 3.2.

Deep learning methods in the context of motion classification were also previously
tested. For instance, Um et al. (2017) employed a Convolutional Neural Network (see
Section 2.1.1). High computation power is required for training a deep neural network.
After training, a model can be deployed to a mobile processing unit. Therefore, the
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Figure 3.2.: Classification process with HMMs. In the training phase, one HMM is
built for each motion class. Recorded features are concatenated and split
into windows (left half). A window wn is then processed by every HMM
calculating probabilities p(wn|HMMi), where i corresponds to a motion
class. The window wn is then classified as class j with p(wn|HMMj)≥
p(wn|HMMi) for all i, i. e., argmax of probabilities. Figure is conception
of Beil et al. (2018).

network structure and learned parameters (weights) have to be stored. The necessary
storage capacity depends on the network size. Likewise, the computational complexity
increases with the size. Thus, for online classification a powerful processing unit may
be necessary.

3.3. Evaluation Methods

Evaluating a classification method requires a sample data set. Depending on the data
set, different evaluation methods are available (e. g., see Section 2.3).

Furthermore, a data set consisting of recordings of more than one person are desirable
to examine classification quality variance within subjects. This allows comparison
between subjects. Moreover, more data points in the data set allow evaluation with
more samples, thus giving a better approximation of the classification quality. Also,
some classification tasks are harder than others, e. g., distinguishing similar classes is
intuitively a harder task than classifying distinct classes. The number of classes can
indicate the difficulty of a task.

Evaluation based on data of a single subject or where this is not specified is common
in the literature (Tunçel et al., 2009; Wang et al., 2015; Kronenwett et al., 2017; Gong
et al., 2018). Others gathered large data sets for their evaluation (Beil et al., 2018;
Um et al., 2017). The latter also uses real-world data, while other data sets are built
in lab conditions.
Before classifying data, it is usually converted into a uniform format. A popular

approach to perform fast classification is called sliding window approach. Here,
recorded data is split into windows of fixed size (Villa-Parra et al., 2015; Beil et al.,
2018; Gong et al., 2018). Windows can be created at an arbitrary rate resulting
in overlapping windows. Classification is then executed with such windows as data.



Section 3.4. Classification Comparison 17

Others (Um et al., 2017; Wang et al., 2015) classify full repetitions of human motion.
This procedure is not suitable in the context of augmenting exoskeletons, as online
classification (classifying while the motion is performed) is necessary.

3.4. Classification Comparison
A compact comparison of approaches in the literature is given in Table 3.1. This list
is limited to contributions where data is recorded with mechanical sensors, as these
are considered suitable for recording data in the context of augmenting exoskeletons.
Details about the presented literature can be found in the Sections 3.1 to 3.3.

Authors Sensors Method Data Set
Window

Size [ms]

Accuracy
[%]

Tunçel
et al.
(2009)

2 Gyroscopes Multiple
methods

8 classes
1 subject 10000 94.2 to

98.2

Wang
et al.
(2015)

7 IMUs SVM 7 classes
n.a.

full
motion 99.14

Um et al.
(2017) 1 IMU CNN 50 classes

1748 subjects 3920 83.34

Gong et al.
(2018) 2 IMUs ANN 6 classes

1 subject 250 97.79

Beil et al.
(2018)

3 IMUs
7 Force
Sensors

HMM 13 classes
10 subjects 300 92.80

Table 3.1.: Comparison of approaches in the literature. Different sensor systems are
used for recording motion data, e. g., Um et al. (2017) uses one IMU, while
Wang et al. (2015) mount seven IMUs at the subject. The third column
lists several methods for motion classification. To test an approach, data
sets of varying size are used. Small data sets may not be representative
and thus, evaluation may not assess a classifiers true performance. The
second to the last column shows the length of time windows, that serve
as samples to classify. Large windows may not be suitable for online
classification, which is desirable for augmenting exoskeletons. In the last
column, classification accuracy of the approaches is given.

Approaches, where only data of a single subject is used, achieve best classification
accuracy. This may be due to the fact, that their classifiers do not have to face the
challenge of inter-subject motion variance. Best classification accuracy is achieved by
Wang et al. (2015). In comparison to other approaches, they use a large amount of
sensors, their data set has a small number of classes (motion types) and classifies data
of full motion execution. This setting may not be applicable for real-world usage, as a
low amount of sensors is desirable, many different human motions are possible and
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classification while motion is performed is required. Other approaches tackle some of
these shortcomings, but classification accuracy drops.



Chapter 4.

Exoskeleton Design and Motion Data

This chapter describes the used exoskeleton from H2T and how motion data was
gathered.

First, the exoskeleton is described and used sensors and their placement are discussed
in Section 4.1. Then, recorded and derived features are listed in Section 4.2. Finally,
in Section 4.3 subjects and motions in the data set are presented.

4.1. Passive Lower Limb Exoskeleton
The exoskeleton used for this thesis was proposed by Beil et al. (2018). This passive
lower limb exoskeleton for the left leg is depicted in Figure 4.1. This figure also shows
the placement of attached sensors and the sensors itself. The exoskeleton consists
of three frames made of soft aluminum, one for each thigh, shank and foot. They
are connected with orthotic revolute joints (Otto Bock HealthCare; 17B47=20 /
17B57=20 ) at the knee and ankle. To fixate the exoskeleton to the user, Velcro straps
are used. The use of soft aluminum allows for small adjustment to the user over
the otherwise rigid exoskeleton. There are three inertial measurement units (IMUs)
placed at the upper leg, lower leg and the foot. The IMUs used are 3BNO055 IMU
by Robert Bosch GmbH. Furthermore, there are seven 3D-force sensors (Optoforce
Ltd.; OMD-30-SE-100N ) installed to Velcro straps measuring forces between the
exoskeleton and the user’s leg muscles.

4.2. Features
The following aspects are conception of Beil et al. (2018). The orientation and
acceleration of every IMU is processed by a micro-controller (4SAM3X8E ARM
Cortex-M3, Microchip Technology Inc.) at a frequency of 80Hz. The micro-controller
stores orientation as quaternions and linear acceleration. Another representation of

19
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Figure 4.1.: Left: The passive lower limb exoskeleton in use. The exoskeleton is worn
at the left leg. Electronics (sensors, processors) are powered by an external
source. The exoskeleton offers stability due to its stiffness, but human
motion is not assisted mechanically.
Right: Exoskeleton design and sensor placement. Force sensors are labeled
in red, IMUs are labeled in blue. Force sensors are placed over big leg
muscles in upper and lower leg. IMUs are placed at each main part of
the leg, i. e., thigh, shank and foot.
Pictures are conception of Beil et al. (2018).

orientation in form of Roll-Pitch-Yaw Euler angles is calculated, as representation with
quaternions is ambiguous. The force sensors capture the interaction forces between
the exoskeleton and the subject. Two data acquisition units convert the raw analog
data of the seven force sensors into a digital signal with a frequency of 100Hz. With
this setup, signals are available at different frequencies. For further processing, signals
of the IMU were interpolated to 100Hz and were merged with the signals of the
force sensors. Differences between consecutive data points are calculated to normalize
force values. Absolute force values may differ due to physical differences between
subjects and different tightening of the Velcro straps. These differences serve as data
for classification.

A common approach to classify sequences is called sliding window approach. Here
consecutive data points are concatenated and form a window. These windows may
also overlap. Window size can be chosen arbitrarily, and fixed or dynamic sizes are
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Average Std-Dev
Age [a] 25.10 3.86

Height [m] 1.73 0.03
Weight [kg] 66.00 5.85

BMI [kg=m2] 22.05 1.54
UL Circumference [cm] 55.20 3.20
LL Circumference [cm] 36.75 1.31

UL Length [cm] 42.80 2.63
LL Length [cm] 41.10 2.30

Table 4.1.: Overview of subject attributes. This table was published by Beil et al.
(2018).

also possible. Some classifiers can only process windows of fixed size, thus limiting
the above decision.

4.3. Data
This section gives an overview of the data set that is the base of this thesis. The data
set was recorded by Beil et al. (2018). Section 4.3.1 lists attributes of all subjects
that participated in the motion recordings. Then a list of all motions is given in
Section 4.3.2.

4.3.1. Subjects
The data set contains recordings of motions executed by 10 healthy subjects. The
passive exoskeleton used in the recordings allows only small variance in the size of the
users as it is hardly adaptable to the size of the wearer. An overview of all parameters
is given in Table 4.1. A full list of subjects and their physical characteristics is given by
Daab (2019). Note that in this thesis, IDs were changed to 1-10 for better readability.
See Appendix A.1 for this mapping.

4.3.2. Motions
All subjects performed the following motions (Beil et al., 2018). This list is extended
by the stand motion, as proposed in their outlook.
• Walking Forward (WF)
• Walking Backwards (WB)
• Turn Left (TL)
• Turn Right (TR)
• Sidesteps Right (SR)
• Sidesteps Left (SL)
• Going Upstairs (GU)
• Going Downstairs Backwards (GB)
• Going Downstairs (GD)
• Lift Object (LO)
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Figure 4.2.: Number of 300 ms windows of each motion type.

• Drop Object (DO)
• Stand Up (SU)
• Sit Down (SD)
• Stand (S)
Each motion was recorded ten times for every subject. The distribution of classes

is given in Figure 4.2. On the one hand motions like GB take a long time to execute,
as several steps are taken. On the other hand there are very short motions like SU
or TL. Thus, the latter classes contain less windows and there is an imbalance of
classes. This leads to challenges in calculating average scores of the classification. See
Section 2.2 for further information. Thus, weighted averaging is suitable to calculate
average scores.



Chapter 5.

Deep Learning Architectures

This chapter presents deep learning architectures employed in this thesis. Section 5.1
introduces a Convolutional Neural Network design, and Section 5.2 introduces a Long
Short-Term Memory network design. The network designs were implemented with
TensorFlow by Abadi et al. (2015).

5.1. Convolutional Neural Network Design
Um et al. (2017) employed a Convolutional Neural Network to classify exercise motion
data. The network design used in this thesis is inspired by the work of Um et al.
(2017). Thus, a similar design is employed. This basic architecture was also employed
by Krizhevsky et al. (2012). Since the data set of H2T serves more features than the
one Um et al. (2017) used, an additional convolution was added to further reduce the
data. Also more feature maps are generated in the convolutional layers to scale the
network model to the data (see Section 4.2). The model is presented in Figure 5.1.
The convolutional layers have 66, 64 and 62 feature maps. The output of the last
layer is then flattened (i. e., a matrix input is reshaped to a vector output) and passed

Convolution Max-Pool Convolution Max-Pool Convolution Dense

Figure 5.1.: The Convolutional Neural Network has three convolutional layers in the
beginning and two dense layers for classification functionality. Figure was
created with NN-SVG by LeNail (2019).
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to the dense part of the architecture. First, a dense layer of 1024 neurons serves as a
feature selector. The last layer is a dense layer of 14 neurons serving as the classifier.
Its output is evaluated with a softmax-function to select the class.
The following parameters for the neural network are taken from Um et al. (2017).

The Adam optimizer (Kingma and Ba, 2015) is used for optimization with a learning
rate of 0.0005. Cross-entropy loss serves as the loss function in the training phase
of the model. Dropout is a popular method to reduce over-fitting (Srivastava et al.,
2014). It prevents propagation of signals in the network with a given probability. A
probability of 0.5 is chosen for dropout.

5.2. Long Short-Term Memory Network Design
Basic concepts of LSTM are explained in Section 2.1.3. A simple architecture for
classification purposes is proposed: a model consisting of just two layers. The first layer
has 128 LSTM blocks (units), the second layer is a dense layer of 14 neurons serving
as the output of the neural network. Classes of the classification task are matched
with output neurons. The networks output is evaluated with a softmax-function.

Further parameters, like optimizer, learning rate, loss function and dropout proba-
bility, are set like for the CNN model (see Section 5.1).



Chapter 6.

Evaluation

This chapter presents quality of classification by the neural networks defined in
Chapter 5. Sections 6.1 and 6.2 correspond to the models introduced in Sections 5.1
and 5.2. Each model is evaluated with the methods proposed in Section 2.3. An
evaluation type selects specific data, then k-fold cross validation is run for the selected
data. In this thesis, the number of folds k is set to 3 as proposed by Daab (2019). In
the evaluations, an implementation of stratified k-fold cross validation by Pedregosa
et al. (2011) is used. Motion classification quality is measured with the metrics
defined in Section 2.2. Features used in evaluations are forces, linear acceleration and
orientation (as Euler angles) if not specified otherwise. Section 6.1.4 and Section 6.2.4
present brief studies of hyperparameter tuning for the employed models. Graphics
visualizing results of these evaluations are rendered with matplotlib by Hunter (2007).
Section 6.3 compares classification results of this thesis to the ones of Beil et al. (2018)
and Patzer and Asfour (2019). In Section 6.4, computational cost of classification
with neural networks is discussed. Training runtime is presented in Section 6.5.

6.1. Convolutional Neural Network Evaluation

This section presents evaluation results for the Convolutional Neural Network archi-
tecture (see Section 5.1). Sections 6.1.1 to 6.1.3 correspond to evaluations presented
in Sections 2.3.2 to 2.3.4. In Section 6.1.4, a small study for hyperparameter tuning is
conducted.

6.1.1. Single-Subject Evaluation

A Single-Subject evaluation was conducted as explained in Section 2.3.2. Results of
this evaluation with 300 ms windows are shown in Table 6.1. Detailed results for other
window sizes are given in Appendix A.3.1. An overview of average metric scores with
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different window sizes is given in Table 6.2. Classification quality improves with larger
window sizes. A reason for this relation may be the longer history of data points to
analyse, thus motion specific events are more likely contained in a window.
Classification accuracy varies within subjects: When classifying 100 ms windows

worst accuracy is at 0.931, while best accuracy is at 0.988. Intra-subject variances is
considered to be the reason of these differences. Detailed evaluation results are given
in Appendix A.3.

Subject Accuracy Recall Precision F1-Score
ID1 0.99970 0.99970 0.99970 0.99970
ID2 0.99978 0.99978 0.99978 0.99978
ID3 0.99965 0.99965 0.99965 0.99965
ID4 0.99973 0.99973 0.99973 0.99973
ID5 0.99937 0.99937 0.99937 0.99937
ID6 0.99966 0.99966 0.99966 0.99966
ID7 0.99946 0.99946 0.99946 0.99946
ID8 0.99985 0.99985 0.99985 0.99985
ID9 0.99996 0.99996 0.99996 0.99996
ID10 0.99979 0.99979 0.99979 0.99979
average 0.99969 0.99969 0.99969 0.99969

Table 6.1.: Single-Subject evaluation results of the CNN model with windows of 300 ms
length.

Window Size [ms] Accuracy Recall Precision F1-Score
100 0.9680 0.9680 0.9685 0.9681
200 0.9988 0.9988 0.9988 0.9988
300 0.9997 0.9997 0.9997 0.9997
400 0.9998 0.9998 0.9998 0.9998
500 0.9998 0.9998 0.9998 0.9998

Table 6.2.: Single-Subject evaluation average results of the CNN model with different
window sizes.

6.1.2. Multi-Subject Evaluation

Evaluation results of Multi-Subject evaluation (see Section 2.3.3) for different window
sizes are presented in Table 6.3. Classification quality benefits from larger window
sizes. Figure 6.1 shows the confusion matrix of an evaluation with 100 ms windows.
Confusion matrices are introduced in Section 2.2.4. Several often confused motions
can be observed, for example, SD and DO is the pair of motions with highest confusion
rate.
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Window Size [ms] Accuracy Recall Precision F1-Score
100 0.92962 0.92962 0.93014 0.92962
200 0.99364 0.99364 0.99368 0.99365
300 0.99878 0.99878 0.99879 0.99878
400 0.99961 0.99961 0.99961 0.99961
500 0.99990 0.99990 0.99990 0.99990

Table 6.3.: Multi-Subject evaluation average results of the CNN model with different
window sizes.

6.1.3. Leave-One-Subject-Out Validation

This section presents results of Leave-One-Subject-Out validation (see Section 2.3.4).
Table 6.4 contains results of two evaluations for different window sizes. Cross-validation
accuracy of the training set (CV accuracy) and classification accuracy for the left out
subject (LO accuracy) are given. As in previous evaluations, larger windows result in
better classification accuracy. Inter-subject variance of LO accuracy is very notable.
For 300 ms windows best LO accuracy is 0.96, while worst is at 0.82. A difference of
14 percentage points is large. It can be concluded that some subjects can be classified
very well, while performance drops significantly for others. Classification results for
other window sizes are given in Appendix A.4.1.

While previous evaluations were performed with the features Beil et al. (2018) used
(force sensors, IMUs as linear acceleration and Euler angles), this evaluation had the
orientation of the IMUs also given as quaternions. This results in better classification
accuracy. Quaternions have a steady representation in contrast to Euler angles. Thus,
interpolation works better with quaternions resulting in more accurate classification.
For classification results for various feature combinations see Appendix A.2.

Compared to results of Single-Subject evaluation in Section 6.1.1, some similarities
are observable. For example, most subjects, that achieve below average motion
classification accuracy (see Table A.8), also achieve below average LO accuracy
(see Table 6.4). This may be due to ambiguous motions, raising a challenge for a
generalizing and an optimized model.

6.1.4. Hyperparameter Tuning

Finding a good set of hyperparameters is a difficult task. Methods for finding optimal
hyperparameters are presented in literature (e. g., Bengio (2000) and Biedenkapp
et al. (2017)). Hyperparameters of neural networks are presented in Section 2.1.4.
These parameters were manually manipulated to see their effects and find a better
configuration of the models presented in Chapter 5. Different modifications are
investigated. They are presented in the following enumeration.

1. Larger dense layer. The second to the last layer is enlarged to have 2048 neurons.

2. Smaller dense layer. The second to the last layer has 512 neurons.

3. Smaller dense layer. The second to the last layer has 256 neurons.
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Figure 6.1.: Confusion matrix of Multi-Subject evaluation of the CNN model with
100 ms window size. Numbers smaller than 0.01 are hidden. Acronyms
for motions are defined in Section 4.3.2. DO and SD as well as LO and
SU are often confused. This can be explained as these pairs are similar
motions. Furthermore, WB and GB are also often confused for the same
reason. Turning left and right are distinguished well, but both are often
confused with WF.

4. No Dropout. Dropout is completely removed from the model.

5. Vary Training epochs. A model is trained for 100 epochs and evaluated after
every epoch.

Modified models are evaluated with Leave-One-Subject-Out evaluation as explained
in Section 2.3.4 to test their generalization performance. All features are used as in
Section 6.1.3. Leave-One-Subject-Out evaluation is fairly expensive, thus evaluations
are conducted with one subject left out (ID4). In Section 6.1.3, an architecture is
evaluated for ten subjects being left out once. Results are presented in Table 6.5.

LO accuracy is best for configuration 3. Cross-validation accuracy does not change
a lot, and is best for the standard model. The LO accuracy oscillates a lot over
epochs (see Figure 6.2). Therefore, having a large model suits well for tasks where
validation data is similar to the training data (e. g., no inter-subject variance like
in Single-Subject evaluation). A smaller number of neurons can reduce the risk of
over-fitting to the training data and also reduces complexity of the model. Since LO
accuracy is competitive when using a smaller model they are recommended when the
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Subject CV accuracy LO accuracy
ID1 0.99005 0.91470
ID2 0.99101 0.94147
ID3 0.99192 0.84207
ID4 0.99305 0.84695
ID5 0.99213 0.88144
ID6 0.99130 0.90114
ID7 0.99199 0.81628
ID8 0.98966 0.88822
ID9 0.99102 0.88391
ID10 0.99242 0.78305
average 0.99145 0.86992
std-dev 0.00100 0.04527

Subject CV accuracy LO accuracy
ID1 0.99981 0.95715
ID2 0.99979 0.96420
ID3 0.99980 0.90282
ID4 0.99987 0.89712
ID5 0.99980 0.93584
ID6 0.99984 0.94466
ID7 0.99980 0.87592
ID8 0.99956 0.93056
ID9 0.99970 0.92094
ID10 0.99983 0.82321
average 0.99978 0.91524
std-dev 0.00009 0.04026

Table 6.4.: Leave-One-Subject-Out validation results of the CNN model for different
window sizes. The second row contains accuracy of cross validation (CV),
the third row contains accuracy of classifying the left out subject (LO).
100 ms on the left, 300 ms on the right. All features were used in this
evaluation.

Modification CV accuracy LO accuracy
none 0.99988 0.89712
1 0.99986 0.89064
2 0.99977 0.89907
3 0.99968 0.90528
4 0.99937 0.87913
5 0.99798 0.89221

Table 6.5.: Results of hyperparameter tuning (Section 6.1.4). First row is the standard
model (see Section 5.1) with no modification.

task is to classify an unseen subject as complexity of the model is reduced. Belkin et al.
(2019) pointed out that (much) larger models can overcome the challenge of over-fitting.
This can also be an interesting approach in the context of motion classification but
will not be investigated in the scope of this thesis.

With the fourth modification (no dropout) the loss is minimized much faster as
the network has access to the full data and is not obstructed by dropout. General-
ization performance is significantly worse than without dropout, thus confirming the
enhancement of dropout (Srivastava et al., 2014).
The last modification is evaluated only for one fold and is plotted in Figure 6.2.

The training accuracy increases slower than the cross-validation accuracy as dropout
obstructs classification in the training process. The accuracy when classifying motions
of the left out subject oscillate around 0.88 after a 10 epochs already. While training
and cross-validation accuracy still increase after that epoch, LO accuracy does not
increase significantly and is also worse at some points. Thus, it can be concluded that
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longer training (i. e., more epochs) do not increase the generalization performance of
the model in the context of classifying motions of a left out subject. A deeper analysis
will be necessary to scientifically prove this statement.
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Figure 6.2.: Metrics of Leave-One-Subject-Out validation for ID4 over 100 epochs.
Training loss is plotted in green, training accuracy in blue. In the training
process weights of the network are adjusted to minimize the loss. Training
and cross validation accuracy (orange) are almost constant after about
40 epochs. LO accuracy (red) oscillates around 0.88 after 10 epochs.

6.2. Long Short-Term Memory Network Evaluation
This section presents scores for the model presented in Section 5.2. Sections 6.2.1
to 6.2.3 correspond to the evaluations introduced in Sections 2.3.2 to 2.3.4. In
Section 6.2.4, effects of changing hyperparameters of the model are observed.

6.2.1. Single-Subject Evaluation

Single-Subject evaluation is explained in Section 2.3.2. Results of this evaluation with
300 ms windows are shown in Table 6.6. Detailed results for other window sizes are
given in Appendix A.3.2. An overview of average metric scores with different window
sizes is given in Table 6.7. Like the CNN model, classification quality improves with
larger window sizes. Classification accuracy varies within subjects: When classifying
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100 ms windows worst accuracy is at 0.946, while best accuracy is at 0.992. Intra-
subject variance is considered to be the reason of these differences.

Subject Accuracy Recall Precision F1-Score
ID1 0.99696 0.99696 0.99699 0.99696
ID2 0.99930 0.99930 0.99930 0.99930
ID3 0.99576 0.99576 0.99578 0.99576
ID4 0.99749 0.99749 0.99749 0.99749
ID5 0.99738 0.99738 0.99740 0.99738
ID6 0.99629 0.99629 0.99632 0.99629
ID7 0.99440 0.99440 0.99453 0.99441
ID8 0.99830 0.99830 0.99831 0.99830
ID9 0.99802 0.99802 0.99802 0.99802
ID10 0.99591 0.99591 0.99595 0.99592
average 0.99698 0.99698 0.99701 0.99698

Table 6.6.: Single-Subject evaluation results of the LSTM model with windows of
300 ms length.

Window Size [ms] Accuracy Recall Precision F1-Score
100 0.97283 0.97283 0.97363 0.97298
200 0.99374 0.99374 0.99390 0.99377
300 0.99698 0.99698 0.99701 0.99698
400 0.99807 0.99807 0.99809 0.99807
500 0.99746 0.99746 0.99755 0.99745

Table 6.7.: Single-Subject evaluation average results of the LSTM model with different
window sizes.

6.2.2. Multi-Subject Evaluation

Evaluation results of Multi-Subject evaluation (see Section 2.3.3) are presented in
Table 6.8. It shows that classification quality benefits from larger window sizes.
Figure 6.3 shows the confusion matrix of an evaluation with 100 ms windows. Similar
to the confusion matrix of Section 6.1.2, pairs of motions that are often confused can
be detected. As for the prior model, SU and LO as well as SD and DO are mistaken
for one another more often than other pairs of motions. In addition, the same motions
as in Section 6.1.2 are classified as S over 1%. This may be due to the fact that these
motions result in a standing motion and are thus classified as S at the end of the
recording.

6.2.3. Leave-One-Subject-Out Validation

This section overviews results of Leave-One-Subject-Out validation (see Section 2.3.4).
Table 6.9 shows results for different window sizes. Like in the previous evaluations,
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Window Size [ms] Accuracy Recall Precision F1-Score
100 0.97066 0.97066 0.97094 0.97070
200 0.99422 0.99422 0.99424 0.99422
300 0.99765 0.99765 0.99766 0.99766
400 0.99894 0.99894 0.99894 0.99894
500 0.99895 0.99895 0.99896 0.99894

Table 6.8.: Multi-Subject evaluation average results of the LSTM model with different
window sizes.

Subject CV accuracy LO accuracy
ID1 0.98429 0.92084
ID2 0.98322 0.92730
ID3 0.98353 0.85917
ID4 0.98635 0.84925
ID5 0.98491 0.88033
ID6 0.98447 0.89514
ID7 0.98555 0.82818
ID8 0.98475 0.87231
ID9 0.98492 0.87447
ID10 0.98623 0.79187
average 0.98482 0.86989
std-dev 0.00098 0.03877

Subject CV accuracy LO accuracy
ID1 0.99808 0.95478
ID2 0.99778 0.94897
ID3 0.99860 0.89128
ID4 0.99842 0.89988
ID5 0.99871 0.93389
ID6 0.99868 0.93717
ID7 0.99873 0.89774
ID8 0.99801 0.89239
ID9 0.99784 0.89008
ID10 0.99883 0.82675
average 0.99837 0.90729
std-dev 0.00038 0.03606

Table 6.9.: Leave-One-Subject-Out validation results of the LSTM model for different
window sizes. 100 ms on the left, 300 ms on the right. The second row
contains accuracy of cross validation (CV), the third row contains accuracy
of classifying the left out subject (LO). All features were used in these
evaluations.

classification accuracy also increases with larger window sizes. Accuracy increases
for every subject, gains in accuracy differ a lot. While accuracy for ID7 increases by
almost 7 percentage points, for ID8 this only increases by 2 percentage points. In
addition, inter-subject variance is challenging in this evaluation. For 300 ms windows,
worst LO accuracy is 0.83, while best is 0.95. A difference of 17% versus 5% incorrectly
classified windows is observed. Thus, classifying motion of an unknown subject works
fine for some subjects, but for others, the model approach has a bad performance.
Classification results for other window sizes are given in Appendix A.4.2.

As stated in Section 6.1.3, an additional representation of the IMUs orientation is
used in this evaluation.

Compared to Section 6.1.3, LO accuracy per subject is below or above average for
both employed models. This may indicate that motions of some subjects are harder
to classify, independent of the classifier.
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Figure 6.3.: Confusion matrix of Multi-Subject evaluation of the LSTM model with
100 ms window size. Numbers smaller than 0.01 are hidden. Acronyms
for motions are defined in Section 4.3.2. Confusions are off the diagonal,
SU and LO as well as SD and DO are the most confused classes due to
their similarity.

6.2.4. Hyperparameter Tuning

In this subsection, the proposed LSTM model is varied to see how alterations of
hyperparameters effect classification quality. As in Section 6.1.4, a Leave-One-Subject-
Out validation (see Section 2.3.4) is conducted for ID4 and 300 ms windows. Tested
models vary in the number of units in the LSTM layer. The number of units are
set to 16, 32, 64 and 256. The standard model has 128 units in its LSTM layer.
Classification accuracies for these modifications are given in Table 6.10.

For small numbers of units (i. e., 16, 32) cross-validation accuracy drops by at least
1%. LO accuracy is best for the largest network, but configurations with 64 and 128
units perform on a similar level.

It can be concluded, that larger networks perform better than smaller ones. Em-
ploying larger networks comes at cost of higher computational cost, see Section 6.4
for further discussion of this trade-off.
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Number of units CV accuracy LO accuracy
16 0.9561 0.8469
32 0.9840 0.8856
64 0.9956 0.9006
128 0.9984 0.8999
256 0.9991 0.9051

Table 6.10.: Results of hyperparameter tuning (Section 6.2.4). Networks with a greater
number of LSTM units achieve better classification accuracy.

6.3. Comparison

This section reviews results of previous sections and a comparison to the work of
Beil et al. (2018) and Patzer and Asfour (2019) is given. An overview of average
classification quality is given in Table 6.11. The first column lists different evaluation
types and window sizes. Then accuracy values of these evaluations are listed for
Convolutional Neural Networks, Long Short-Term Memory networks and Hidden
Markov Models.

Evaluation
Type CNN LSTM HMM

SS 100 ms 0.9680 0.9728 0.9535
SS 200 ms 0.9988 0.9937 0.9739
SS 300 ms 0.9997 0.9970 0.9836
SS 400 ms 0.9998 0.9981 0.9895
SS 500 ms 0.9998 0.9975 0.9933
MS 100 ms 0.9296 0.9707 0.8292
MS 200 ms 0.9936 0.9942 0.8916
MS 300 ms 0.9988 0.9977 0.9280
MS 400 ms 0.9996 0.9989 0.9500
MS 500 ms 0.9999 0.9990 0.9646

LOSO 100 ms 0.8699 0.8699 n.a.
LOSO 200 ms 0.8770 0.8740 n.a.
LOSO 300 ms 0.9152 0.9073 0.8486
LOSO 400 ms 0.9328 0.9246 n.a.
LOSO 500 ms 0.9415 0.9400 n.a.

Table 6.11.: Comparison of classification techniques. Classification scores of Single-
Subject evaluation (SS), Multi-Subject evaluation (MS) and Leave-One-
Subject-Out validation (LOSO) are given as average accuracy. Hidden
Markov Models (HMMs) were evaluated by Beil et al. (2018) and Patzer
and Asfour (2019). Detailed evaluation results of Convolutional Neural
Networks (CNN) and Long Short-Term Memory models (LSTM) are
given in Section 6.1 and Section 6.2.
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As stated in Section 6.1.3, motion classification accuracy is significantly better in
Leave-One-Subject-Out validation when using all features as data for classification.
Beil et al. (2018) did not consider quaternions for their classifiers. Table A.6 shows
that LO accuracy drops to 0.8465. For classification performance with various feature
combinations see Appendix A.2. For better comparability, Single- and Multi-Subject
evaluation is run with the same data representation as in the previous work.

The proposed deep learning architectures of Chapter 5 perform consistently better
than Hidden Markov Models. While for Single-Subject evaluation (SS) differences in
motion classification accuracy are small, major improvements could be achieved for
Multi-Subject evaluation (MS). In MS for small window sizes (100 ms), the LSTM
model achieves best motion classification accuracy with 3% incorrectly classified
windows, while CNNs and HMMs have an error of 7% and 17%.

In Leave-One-Subject-Out validation (LOSO), the proposed network architectures
outperform the approach of classifying windows with HMMs. There, both artificial
neural networks classify less than 10% of windows incorrectly, whereas HMMs do 15%
wrong (300 ms windows). Furthermore, the proposed network models still perform
better with window sizes of 100 ms than the HMM with 300 ms windows. For larger
window sizes, classification accuracy is further improved, indicating a good generaliza-
tion performance. This shows, that the models do not over-fit much to the subjects in
the training set.

6.4. Computational Requirements

To classify motion online, a processing system at the exoskeleton is necessary. This
constraint limits size and power of such systems. While deep learning models are
usually trained on very powerful systems, many applications only provide a fraction
of these resources to execute such a model for the user (Howard et al., 2017; Sandler
et al., 2018). A similar challenge was approached by Hundhausen et al. (2019). In their
proposed system, a Convolutional Neural Network is deployed on a micro-controller
to classify images.

In this section, computational cost for classifying with the CNN model (Section 5.1)
is presented. A complexity analysis for the LSTM model is not conducted in this
thesis. To calculate the output of a neural network, an input signal is propagated
forwards through the network (see Section 2.1.1). This is carried out by many
Multiply-Accumulate (MAC) operations. Different types of layers process input
signals differently and require diverse computational resources. A convolutional layer
has the computational cost of (Howard et al., 2017):

K1 ·K2 ·Ci ·Co ·F1 ·F2 (6.1)

where the K1×K2 is the kernel size, Ci and Co are the number of input and output
channels, and F1×F2 is the size of the output feature map. Processing a dense layer
can be realized as a matrix vector product with the layer’s weights arranged in a
matrix and the input as a vector. Thus, the computational cost of this is the product
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of count of input neurons and output neurons:

Ni ·No (6.2)

In this analysis, other requirements like applying the activation function are neglected.
Furthermore, the computational cost of other layers employed is relatively small in
comparison to convolutional or dense layers. Therefore, their cost is not calculated,
as runtime will only be affected marginally.
Table 6.12 gives an overview of computational complexity of the Convolutional

Neural Network presented in Section 5.1 for classifying 300 ms windows (29 time
steps). The convolutional layers demand most of necessary operations. The second to
the last layer (dense) also requires a lot of MAC operations. Classifying one window
costs over 25 million MAC operations.

Layer Type Output Shape Parameters Operations
Convolution 27×37×66 660 593,406

MaxPooling2D 27×18×66 0
Dropout 27×18×66 0

Convolution 25×16×64 38,080 15,206,400
MaxPooling2 25×8×64 0

Dropout 25×8×64 0
Convolution 23×6×62 35,774 4,928,256
Dropout 23×6×62 0
Flatten 8556 0
Dense 512 4,381,184 4,380,672

Dropout 512 0
Dense 14 7,182 7,168
Total 4,462,880 25,115,902

Table 6.12.: CNN model (see Section 5.1) size and computational cost. Number of
parameters calculated with TensorFlow and operations calculated with
formulas given in Section 6.4.

The neural network of Hundhausen et al. (2019) takes about 3.2 million MAC
operations. This process has a runtime of493 ms with an on-device micro-processor
(ARM Cortex-H7). Processing signals in a neural network can be further optimized,
so the author’s optimized version evaluates in 115ms. The proposed model of this
thesis does not satisfy online classification requirements as a linear increase with the
number of necessary MACs is expected, resulting in an optimized runtime of about
900 ms. Thus, either more powerful hardware or computationally simpler models are
necessary.
The model was also run on a desktop CPU (Intel i7-4790K). There, classifying

over 12,000 motion windows has a runtime of 4.47s equivalent to a runtime of less
than1 ms per window. If installing a powerful system at the exoskeleton is not possible,
computational cost of classifying with the neural network can be reduced. Simpler,
smaller models (e. g., less convolutions, less feature maps, less neurons) require less
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MAC operations as Equation (6.1) and Equation (6.2) easily show. Performance of
smaller models is also evaluated in Section 6.1.4. In that evaluation, smaller models
performed on a similar level. These models only differ in the size of the dense layer.
In addition, a models complexity depends on the window size, i. e., a model built

for classifying 100 ms windows requires less MACs, as the input is smaller and less
steps are needed to perform a convolution. Decreasing the window size also decreases
the time to fill a window but comes at cost of worse classification accuracy (see
Section 6.1.2).
For comparison a small model was created. It consists of a convolutional layer

creating 16 feature maps, followed a max pooling layer. Their output is processed
by a two-layer dense network of 32 and 14 neurons. Computational requirements are
reduced a lot, but motion classification accuracy also drops, i. e., when classifying
300 ms windows left out accuracy for ID4 is 0.897 with the standard model. This
drops to 0.789 with the small model. Moreover, cross-validation accuracy decreases
from 0.9999 to 0.92. Having computationally simpler models may come at cost of less
accurate classification. Finding a lightweight model for accurate online classification
will be a task for future work.

A complexity analysis for the LSTM model is not conducted. In preliminary tests,
however, a runtime similar to the CNN’s was measured on the desktop PC. In general,
inference with LSTMs is expensive. Approaches to reduce computational requirements
of LSTMs can be found in the literature (Campos et al., 2017; Dennis et al., 2018).

6.5. Training Runtime
Training a neural network is a critical part of deep learning. A model is fit to the task in
this process. The weights of the model are adjusted with backpropagation to minimize
a loss function calculated based on training data (see Equation (2.1)). This procedure
is computationally expensive. Since 2006, implementations of backpropagation for
graphics cards are available. This enables significantly shorter runtime (Schmidhuber,
2015).

The proposed models of Chapter 5 are implemented with TensorFlow (Abadi et al.,
2015) and are trained on a NVIDIA Titan X graphics card. Training a CNN model in
Multi-Subject evaluation (see Section 2.3.3) takes about 18 min. For the LSTM model
the algorithm has a runtime of about 7 min. Both models are trained with 300 ms
second windows and two thirds of the data set serve as training data. As the LSTM
model has much fewer parameters, the difference in runtime can be explained as fewer
weights have to be fitted to the data. In comparison, Daab (2019) trained Hidden
Markov Models with four fifth of the data set in about an hour on a powerful CPU
(Intel i7-8700K). Thus, training the proposed artificial neural networks is substantially
faster than the approach with HMMs.
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Conclusion and Future Work

Within this thesis, two deep learning architectures were applied to the task of motion
classification in the context of exoskeletons. Section 7.1 concludes results of this thesis.
An outlook on future work is given in Section 7.2.

7.1. Conclusion

In this thesis, motion classification in the context of exoskeletons was processed by
artificial neural networks.
The data set was recorded with a passive uni-lateral lower limb exoskeleton (Beil

et al., 2018). It contains 14 common motion types performed by ten subjects. Sensors
are attached to the exoskeleton. Three IMUs at upper leg, lower leg and foot measure
orientation and linear acceleration. 7 3D-force sensors measure interaction forces
between the exoskeleton and the wearer’s muscles.

To classify motion, recorded data is concatenated to sliding windows. These windows
are then fed into a classifier. In previous work with the data set, window sizes range
from 100 ms to 500 ms (Beil et al., 2018). In this thesis, these window sizes are also
used for classification.

Two artificial neural network architectures – CNN, which is adapted from Um et al.
(2017), and LSTM – are proposed and their classification quality is measured with
different evaluations.
Three different evaluations for different usage scenarios were conducted. First,

in Single-Subject evaluation, a classifier is trained with data of one subject and
performance is tested with other data of this subject. The real-world application
can be an exoskeleton that is worn by only one person resulting in the opportunity
to optimize the system for this person. Second, in Multi-Subject evaluation, data
of multiple subjects serves as training data. Remaining data of these subjects is
used for testing the classifier. This approach may be used when an exoskeleton is

39
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used by multiple known people. Third, Leave-One-Subject-Out validation shows
generalization performance of a classifier. Here, a classifier is trained with data of
multiple subjects. It is then tested with data of a subject not contained in the training
set. Here, inter-subject motion variance is a big challenge.
For window sizes greater or equal to 200 ms Single-Subject and Multi-Subject

evaluation accuracy is over 0.99. LSTM performs better than CNN when classifying
100 ms windows with a classification accuracy of 0.97 compared to 0.93. Compared to
the HMM approach of Beil et al. (2018), motion classification accuracy was improved
for all evaluations and all window sizes, e. g., in Multi-Subject evaluation for 100 ms
windows, motion classification accuracy improved from 0.83 to 0.97. See Table 6.11
for a compact comparison.

7.2. Future Work
Reducing computational requirements of classification is challenging, as a classifier’s
architecture dictates its inference cost but also classification quality depends on the
model layout. Approaches to reduce computational effort are, e. g., classifying smaller
windows, employing smaller dense layers, creating less feature maps, employing smaller
dense layers. While the former approaches were already applied within this thesis,
further modification of the network model is still to be analysed.
In real-world applications, classification of motion transitions (i. e., changing from

one motion to another) is critical. Sliding windows of a transition contain data points
of the old motion and the new motion, but only the new motion type is necessary.
This challenge is yet to be faced and motion data of transitions will be necessary.

Approaches to segment human motion can be found in the literature (see Lin et al.,
2016, for an overview). Each segment represents a specific part of motion (e. g., gait
cycle phase, motion primitive). With segmented data, specific events (e. g., heel strike)
could be recognizable and segment lengths could be calculated, resulting in additional
information, that might be useful for classification.
Single-Subject evaluation assessed best performance for the presented artificial

neural network models. Thus, if viable, a profile system at the exoskeleton could
achieve best performance for every user. Leave-One-Subject-Out validation revealed
challenges in inter-subject generalization, as motion classification performance for
unseen subjects drops. Novak and Riener (2015) recommend research on adaptive
classifiers. Adaptive classifiers are pre-trained models used for motion classification
of unseen subjects. The model is then optimized for the new subject during usage.
This approach enables new users to use the exoskeleton without previously recording
motion data, but also offers subject-specific optimization.
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Appendix A.

Evaluation Results

This appendix contains detailed results from evaluations. This may serve as a basis for
further research. First, the mapping of IDs for simplification is given. Then, detailed
results are presented in the following sections.

A.1. ID Mapping

Table A.1 shows the mapping of simplifying IDs of users in the data set (see Section 4.3).

Actual ID Simplified ID
ID674 ID1
ID917 ID2
ID1717 ID3
ID1718 ID4
ID1719 ID5
ID1720 ID6
ID1722 ID7
ID1723 ID8
ID1724 ID9
ID1725 ID10

Table A.1.: IDs of subjects are simplified.

A.2. Feature Reduction

Tables A.2 to A.7 show detailed evaluation results with Leave-One-Subject-Out
validation (explained in Section 2.3.4) for various feature combinations. All evaluations

47
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Subject CV accuracy LO accuracy
ID1 0.9987 0.7907
ID2 0.9991 0.7698
ID3 0.9986 0.6670
ID4 0.9987 0.6155
ID5 0.9989 0.6998
ID6 0.9983 0.7442
ID7 0.9989 0.7452
ID8 0.9993 0.6195
ID9 0.9985 0.6728
ID10 0.9990 0.4770
average 0.9988 0.6802
std-dev 0.0003 0.0885

Table A.2.: Force Sensors

Subject CV accuracy LO accuracy
ID1 0.9809 0.9407
ID2 0.9800 0.9523
ID3 0.9803 0.8992
ID4 0.9814 0.8716
ID5 0.9808 0.9053
ID6 0.9809 0.9124
ID7 0.9799 0.9248
ID8 0.9818 0.9157
ID9 0.9814 0.9035
ID10 0.9831 0.8643
average 0.9811 0.9090
std-dev 0.0009 0.0259

Table A.3.: Euler angles and linear acceleration.

were run with 300 ms windows. The CNN model as defined in Section 5.1 serves as
classifier. A systematic feature space exploration for Hidden Markov Models was
conducted by Daab (2019).
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Subject CV accuracy LO accuracy
ID1 0.9961 0.9290
ID2 0.9965 0.9474
ID3 0.9964 0.9205
ID4 0.9967 0.9000
ID5 0.9964 0.9286
ID6 0.9963 0.9241
ID7 0.9961 0.8057
ID8 0.9963 0.8935
ID9 0.9960 0.8978
ID10 0.9979 0.7823
average 0.9965 0.8929
std-dev 0.0005 0.0522

Table A.4.: Quaternions

Subject CV accuracy LO accuracy
ID1 0.9998 0.9563
ID2 0.9997 0.9565
ID3 0.9998 0.8981
ID4 0.9998 0.9009
ID5 0.9998 0.9282
ID6 0.9999 0.9457
ID7 0.9998 0.8441
ID8 0.9998 0.9250
ID9 0.9998 0.9113
ID10 0.9998 0.8129
average 0.9998 0.9079
std-dev 0.0001 0.0448

Table A.5.: Force, Quaternions and Linear Acceleration

Subject CV accuracy LO accuracy
ID1 0.9994 0.9044
ID2 0.9994 0.9137
ID3 0.9995 0.8323
ID4 0.9995 0.8144
ID5 0.9994 0.8690
ID6 0.9990 0.8567
ID7 0.9992 0.8879
ID8 0.9995 0.8424
ID9 0.9994 0.8412
ID10 0.9995 0.7029
average 0.9994 0.8465
std-dev 0.0001 0.0567

Table A.6.: Force sensors, Euler angles, Linear Acceleration
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Subject CV accuracy LO accuracy
ID1 0.9987 0.9348
ID2 0.9986 0.9478
ID3 0.9987 0.8773
ID4 0.9988 0.8846
ID5 0.9988 0.9241
ID6 0.9987 0.9381
ID7 0.9987 0.8530
ID8 0.9988 0.8944
ID9 0.9987 0.9085
ID10 0.9989 0.8003
average 0.9987 0.8963
std-dev 0.0001 0.0429

Table A.7.: All features used (i. e., Force sensors, Euler angles, Quaternions, Linear
Acceleration)
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Subject Accuracy Recall Precision F1-Score
ID1 0.9833 0.9833 0.9834 0.9833
ID2 0.9882 0.9882 0.9882 0.9881
ID3 0.9629 0.9629 0.9633 0.9629
ID4 0.9307 0.9307 0.9316 0.9308
ID5 0.9615 0.9615 0.9621 0.9616
ID6 0.9716 0.9716 0.9720 0.9716
ID7 0.9618 0.9618 0.9621 0.9618
ID8 0.9769 0.9769 0.9770 0.9769
ID9 0.9836 0.9836 0.9838 0.9837
ID10 0.9594 0.9594 0.9617 0.9599
average 0.9680 0.9680 0.9685 0.9681

Table A.8.: Single-Subject evaluation of the CNN model with 100 ms window size.

Subject Accuracy Recall Precision F1-Score
ID1 0.9999 0.9999 0.9999 0.9999
ID2 0.9995 0.9995 0.9995 0.9995
ID3 0.9990 0.9990 0.9990 0.9990
ID4 0.9972 0.9972 0.9972 0.9972
ID5 0.9979 0.9979 0.9980 0.9979
ID6 0.9985 0.9985 0.9986 0.9985
ID7 0.9982 0.9982 0.9982 0.9982
ID8 0.9990 0.9990 0.9990 0.9990
ID9 0.9998 0.9998 0.9998 0.9998
ID10 0.9984 0.9984 0.9984 0.9984
average 0.9988 0.9988 0.9988 0.9988

Table A.9.: Single-Subject evaluation of the CNN model with 200 ms window size.

A.3. Single-Subject Evaluation
A.3.1. Convolutional Neural Network
This subsection provides detailed Single-Subject evaluation results with different
window sizes. The CNN model as defined in Section 5.1 serves as classifier. Tables A.8
to A.12 show scores of motion classification for window sizes from 100 ms to 500 ms.
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Subject Accuracy Recall Precision F1-Score
ID1 0.99970 0.99970 0.99970 0.99970
ID2 0.99978 0.99978 0.99978 0.99978
ID3 0.99965 0.99965 0.99965 0.99965
ID4 0.99973 0.99973 0.99973 0.99973
ID5 0.99937 0.99937 0.99937 0.99937
ID6 0.99966 0.99966 0.99966 0.99966
ID7 0.99946 0.99946 0.99946 0.99946
ID8 0.99985 0.99985 0.99985 0.99985
ID9 0.99996 0.99996 0.99996 0.99996
ID10 0.99979 0.99979 0.99979 0.99979
average 0.99969 0.99969 0.99969 0.99969

Table A.10.: Single-Subject evaluation of the CNN model with 300 ms window size.

Subject Accuracy Recall Precision F1-Score
ID1 0.99989 0.99989 0.99989 0.99989
ID2 0.99983 0.99983 0.99983 0.99983
ID3 0.99970 0.99970 0.99970 0.99970
ID4 0.99939 0.99939 0.99939 0.99939
ID5 0.99984 0.99984 0.99984 0.99984
ID6 0.99980 0.99980 0.99980 0.99980
ID7 0.99981 0.99981 0.99981 0.99981
ID8 0.99987 0.99987 0.99987 0.99987
ID9 0.99989 0.99989 0.99989 0.99989
ID10 0.99980 0.99980 0.99980 0.99980
average 0.99978 0.99978 0.99978 0.99978

Table A.11.: Single-Subject evaluation of the CNN model with 400 ms window size.

Subject Accuracy Recall Precision F1-Score
ID1 0.99988 0.99988 0.99988 0.99988
ID2 0.99994 0.99994 0.99994 0.99994
ID3 0.99977 0.99977 0.99977 0.99977
ID4 0.99976 0.99976 0.99976 0.99976
ID5 0.99980 0.99980 0.99980 0.99980
ID6 0.99968 0.99968 0.99968 0.99968
ID7 0.99992 0.99992 0.99992 0.99992
ID8 0.99984 0.99984 0.99984 0.99984
ID9 0.99983 0.99983 0.99983 0.99983
ID10 0.99971 0.99971 0.99971 0.99971
average 0.99981 0.99981 0.99981 0.99981

Table A.12.: Single-Subject evaluation of the CNN model with 500 ms window size.
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Subject Accuracy Recall Precision F1-Score
ID1 0.98218 0.98218 0.98247 0.98220
ID2 0.99214 0.99214 0.99217 0.99214
ID3 0.97726 0.97726 0.97788 0.97738
ID4 0.94618 0.94618 0.94752 0.94639
ID5 0.97042 0.97042 0.97150 0.97057
ID6 0.97010 0.97010 0.97095 0.97024
ID7 0.95987 0.95987 0.96099 0.96009
ID8 0.97948 0.97948 0.97974 0.97950
ID9 0.98300 0.98300 0.98314 0.98303
ID10 0.96762 0.96762 0.96992 0.96825
average 0.97283 0.97283 0.97363 0.97298

Table A.13.: Single-Subject evaluation of the LSTM model with 100 ms window size.

Subject Accuracy Recall Precision F1-Score
ID1 0.99786 0.99786 0.99787 0.99786
ID2 0.99896 0.99896 0.99896 0.99896
ID3 0.99472 0.99472 0.99482 0.99473
ID4 0.98841 0.98841 0.98863 0.98845
ID5 0.99165 0.99165 0.99187 0.99168
ID6 0.99324 0.99324 0.99331 0.99326
ID7 0.99127 0.99127 0.99145 0.99130
ID8 0.99645 0.99645 0.99646 0.99645
ID9 0.99537 0.99537 0.99540 0.99538
ID10 0.98948 0.98948 0.99021 0.98963
average 0.99374 0.99374 0.99390 0.99377

Table A.14.: Single-Subject evaluation of the LSTM model with 200 ms window size.

A.3.2. Long Short-Term Memory
This subsection provides detailed Single-Subject evaluation results of the LSTM
architecture defined in Section 5.2. Tables A.13 to A.17 show scores of motion
classification for window sizes from 100 ms to 500 ms.
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Subject Accuracy Recall Precision F1-Score
ID1 0.99696 0.99696 0.99699 0.99696
ID2 0.99930 0.99930 0.99930 0.99930
ID3 0.99576 0.99576 0.99578 0.99576
ID4 0.99749 0.99749 0.99749 0.99749
ID5 0.99738 0.99738 0.99740 0.99738
ID6 0.99629 0.99629 0.99632 0.99629
ID7 0.99440 0.99440 0.99453 0.99441
ID8 0.99830 0.99830 0.99831 0.99830
ID9 0.99802 0.99802 0.99802 0.99802
ID10 0.99591 0.99591 0.99595 0.99592
average 0.99698 0.99698 0.99701 0.99698

Table A.15.: Single-Subject evaluation of the LSTM model with 300 ms window size.

Subject Accuracy Recall Precision F1-Score
ID1 0.99868 0.99868 0.99868 0.99868
ID2 0.99888 0.99888 0.99888 0.99888
ID3 0.99834 0.99834 0.99835 0.99834
ID4 0.99536 0.99536 0.99547 0.99537
ID5 0.99929 0.99929 0.99929 0.99929
ID6 0.99667 0.99667 0.99668 0.99667
ID7 0.99872 0.99872 0.99872 0.99872
ID8 0.99798 0.99798 0.99802 0.99798
ID9 0.99959 0.99959 0.99959 0.99959
ID10 0.99719 0.99719 0.99722 0.99719
average 0.99807 0.99807 0.99809 0.99807

Table A.16.: Single-Subject evaluation of the LSTM model with 400 ms window size.

Subject Accuracy Recall Precision F1-Score
ID1 0.99927 0.99927 0.99927 0.99927
ID2 0.99904 0.99904 0.99904 0.99904
ID3 0.99629 0.99629 0.99638 0.99630
ID4 0.99387 0.99387 0.99448 0.99380
ID5 0.99875 0.99875 0.99876 0.99875
ID6 0.99873 0.99873 0.99874 0.99874
ID7 0.99306 0.99306 0.99316 0.99303
ID8 0.99869 0.99869 0.99869 0.99869
ID9 0.99855 0.99855 0.99858 0.99855
ID10 0.99836 0.99836 0.99837 0.99836
average 0.99746 0.99746 0.99755 0.99745

Table A.17.: Single-Subject evaluation of the LSTM model with 500 ms window size.
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Subject CV accuracy LO accuracy
ID1 0.99005 0.91470
ID2 0.99101 0.94147
ID3 0.99192 0.84207
ID4 0.99305 0.84695
ID5 0.99213 0.88144
ID6 0.99130 0.90114
ID7 0.99199 0.81628
ID8 0.98966 0.88822
ID9 0.99102 0.88391
ID10 0.99242 0.78305
average 0.99145 0.86992
std-dev 0.00100 0.04527

Table A.18.: Leave-One-Subject-Out validation results for the CNN model with 100 ms
window size.

A.4. Leave-One-Subject-Out Validation
This section provides additional evaluation results of Leave-One-Subject-Out validation
for the proposed network architectures.

A.4.1. Convolutional Neural Network
Leave-One-Subject-Out validation results are presented in Tables A.18 to A.22. Each
table corresponds to a window size in the range of 100 ms to 500 ms.
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Subject CV accuracy LO accuracy
ID3 0.99951 0.87435
ID4 0.99951 0.86898
ID5 0.99934 0.90035
ID6 0.99947 0.91835
ID7 0.99932 0.84644
ID8 0.99949 0.90315
ID9 0.99912 0.90144
ID10 0.99953 0.80295
average 0.99941 0.87700
std-dev 0.00013 0.03540

Table A.19.: Leave-One-Subject-Out validation results for the CNN model with 200 ms
window size. In this evaluation calculations for ID1 and ID2 failed and
are therefore missing.

Subject CV accuracy LO accuracy
ID1 0.99981 0.95715
ID2 0.99979 0.96420
ID3 0.99980 0.90282
ID4 0.99987 0.89712
ID5 0.99980 0.93584
ID6 0.99984 0.94466
ID7 0.99980 0.87592
ID8 0.99956 0.93056
ID9 0.99970 0.92094
ID10 0.99983 0.82321
average 0.99978 0.91524
std-dev 0.00009 0.04026

Table A.20.: Leave-One-Subject-Out validation results for the CNN model with 300 ms
window size.
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Subject CV accuracy LO accuracy
ID1 0.99988 0.97370
ID2 0.99993 0.97020
ID3 0.99990 0.90991
ID4 0.99993 0.92470
ID5 0.99991 0.95256
ID6 0.99993 0.95855
ID7 0.99994 0.88989
ID8 0.99992 0.94846
ID9 0.99991 0.93561
ID10 0.99982 0.86455
average 0.99991 0.93281
std-dev 0.00003 0.03386

Table A.21.: Leave-One-Subject-Out validation results for the CNN model with 400 ms
window size.

Subject CV accuracy LO accuracy
ID1 0.99995 0.98017
ID2 0.99992 0.97855
ID3 0.99994 0.91694
ID4 0.99995 0.93922
ID5 0.99993 0.95573
ID6 0.99993 0.96490
ID7 0.99992 0.90804
ID8 0.99997 0.95929
ID9 0.99991 0.93650
ID10 0.99995 0.87653
average 0.99994 0.94159
std-dev 0.00002 0.03148

Table A.22.: Leave-One-Subject-Out validation results for the CNN model with 500 ms
window size.
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Subject CV accuracy LO accuracy
ID1 0.98429 0.92084
ID2 0.98322 0.92730
ID3 0.98353 0.85917
ID4 0.98635 0.84925
ID5 0.98491 0.88033
ID6 0.98447 0.89514
ID7 0.98555 0.82818
ID8 0.98475 0.87231
ID9 0.98492 0.87447
ID10 0.98623 0.79187
average 0.98482 0.86989
std-dev 0.00098 0.03877

Table A.23.: Leave-One-Subject-Out validation results for 100 ms windows with the
LSTM model.

A.4.2. Long Short-Term Memory
Tables A.23 to A.27 correspond to Leave-One-Subject-Out validations for window
sizes ranging from 100 ms to 500 ms. The LSTM architecture serves as classifier.
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Subject CV accuracy LO accuracy
ID1 0.99574 0.82282
ID2 0.99554 0.91778
ID3 0.99584 0.87869
ID4 0.99673 0.87578
ID5 0.99683 0.89109
ID6 0.99587 0.91608
ID7 0.99622 0.87405
ID8 0.99571 0.86403
ID9 0.99545 0.88682
ID10 0.99625 0.81257
average 0.99602 0.87397
std-dev 0.00045 0.03265

Table A.24.: Leave-One-Subject-Out validation results for 200 ms windows with the
LSTM model.

Subject CV accuracy LO accuracy
ID1 0.99808 0.95478
ID2 0.99778 0.94897
ID3 0.99860 0.89128
ID4 0.99842 0.89988
ID5 0.99871 0.93389
ID6 0.99868 0.93717
ID7 0.99873 0.89774
ID8 0.99801 0.89239
ID9 0.99784 0.89008
ID10 0.99883 0.82675
average 0.99837 0.90729
std-dev 0.00038 0.03606

Table A.25.: Leave-One-Subject-Out validation results for 300 ms windows with the
LSTM model.
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Subject CV accuracy LO accuracy
ID1 0.99938 0.96734
ID2 0.99864 0.96274
ID3 0.99935 0.90137
ID4 0.99943 0.91651
ID5 0.99899 0.93822
ID6 0.99926 0.95927
ID7 0.99939 0.91587
ID8 0.99931 0.91763
ID9 0.99848 0.90176
ID10 0.99957 0.86517
average 0.99918 0.92459
std-dev 0.00034 0.03074

Table A.26.: Leave-One-Subject-Out validation results for 400 ms windows with the
LSTM model.

Subject CV accuracy LO accuracy
ID1 0.99911 0.97378
ID2 0.99967 0.97845
ID3 0.99942 0.91229
ID4 0.99971 0.93284
ID5 0.99949 0.96237
ID6 0.99953 0.96865
ID7 0.99966 0.92402
ID8 0.99957 0.93546
ID9 0.99918 0.92407
ID10 0.99972 0.88783
average 0.99951 0.93998
std-dev 0.00020 0.02830

Table A.27.: Leave-One-Subject-Out validation results for 500 ms windows with the
LSTM model.
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